На правах рукописи

Климашин Антон Алексеевич

Ускоренное окисление меди в контакте с MoO₃ и V₂O₅

Специальность 02.00.01 – Неорганическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата химических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте металлургии и материаловедения им. А.А. Байкова РАН.

Научный руководитель:	Доктор физико-математических наук		
	Белоусов Валерий Васильевич		
Официальные оппоненты:	Доктор химических наук, профессор		
	Кецко Валерий Александрович (ИОНХ РАН)		
	Доктор химических наук, профессор		
	Ракоч Александр Григорьевич (НИТУ МИСиС)		

 Ведущая организация: Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии имени А.Н. Фрумкина РАН

Защита состоится 22 марта 2012 года в 14:00 на заседании диссертационного совета Д 002.060.04 при Федеральном государственном бюджетном учреждении науки Институте металлургии и материаловедения им. А.А. Байкова РАН по адресу: 119991, г. Москва, ул. Ленинский проспект, д. 49.

С диссертацией можно ознакомиться в библиотеке Федерального государственного бюджетного учреждения науки Института металлургии и материаловедения им. А.А. Байкова РАН и на сайте института <u>www.imet.ac.ru</u>.

Автореферат разослан « » февраля 2012 года

Ученый секретарь диссертационного совета Д 002.060.04 д.т.н.

Inn

В.С. Комлев

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Высокая теплопроводность меди позволяет использовать ее в различных устройствах охлаждения, применяемых в ракетнокосмической технике, ядерной и топливной энергетике и других отраслях народного хозяйства. В таких устройствах медь работает в непосредственном контакте с жаростойким сплавом (на основе Ni, Co или Cr) или тугоплавким металлом (W, Nb, Mo, V и др.). Практика показала, что не все тугоплавкие металлы в контакте с медью обеспечивают достаточный ресурс охлаждающих устройств при повышенной температуре в окислительной атмосфере. Например, в системах Cu–Mo и Cu–V может происходить ускоренное окисление меди, обусловленное образованием легкоплавких оксидов MoO_3 или V_2O_5 .

Проблема ускоренного окисления металлов и широко сплавов обсуждается в литературе, особенно в связи с так называемыми «горячей «катастрофическим окислением» коррозией» и металлов, вызванными образованием жидкой фазы в продуктах окисления. Для объяснения ускоренного окисления металлов и сплавов, инициированного образованием жидкой фазы в продуктах окисления, были предложены растворный (кислое или основное флюсование) и диффузионный (ускоренный массоперенос в жидкой фазе) механизмы. Однако единая точка зрения на механизм ускоренного окисления металлов отсутствует. В настоящее время недостаточно изучена кинетика процесса, транспортные свойства и микроструктура оксидных слоев, отсутствует адекватная модель процесса ускоренного окисления металлов. В этой связи работа направлена на выявление механизмов ускоренного окисления меди в контакте с легкоплавкими оксидами и разработку модели этого процесса.

Цель работы. Установление кинетических закономерностей и разработка модели процесса ускоренного окисления меди в контакте с MoO₃ и V₂O₅. Конкретные задачи, решаемые в рамках сформулированной цели:

- исследование кинетики окисления меди в контакте с MoO₃ и V₂O₅ в температурном интервале 400-800 °C на воздухе;
- изучение микроструктуры и фазового состава продуктов ускоренного окисления меди;
- исследование транспортных свойств продуктов ускоренного окисления меди;
- разработка модели процесса ускоренного окисления меди в контакте с легкоплавкими оксидами.

Научная новизна работы

- Установлены кинетические закономерности процесса ускоренного окисления меди в контакте с MoO₃ и V₂O₅ на воздухе. Показано, что процесс ускоренного окисления меди подчиняется параболическому временному закону.
- Установлено, что ускоренное окисление меди обусловлено образованием поперечных жидких каналов в оксидном слое. Показано, что диффузия ионов кислорода по жидким каналам является лимитирующей стадией процесса.
- Определены константы скорости. Показано, что константа параболической скорости окисления меди возрастает на два порядка величины и составляет 3,8·10⁻⁵ кг²·м⁻⁴·с⁻¹ (удельная масса покрытия MoO₃ 0,9 кг·м⁻²) и 1,6·10⁻⁵ кг²·м⁻⁴·с⁻¹ (удельная масса покрытия V₂O₅ 0,225 кг·м⁻²) при 700 °C.
- 4. Обнаружена высокая селективная проницаемость по кислороду модельных композитов $MoO_3 8-11$ вес.% CuMoO₄ и $V_2O_5 12-18$ вес.% CuV₂O₆. Удельный поток кислорода через композиты $MoO_3 11$ вес. % CuMoO₄ и $V_2O_5 18$ вес. % CuV₂O₆ составляет ~1,7·10⁻⁴ моль·м⁻²с⁻¹ при 720 °C и 640 °C, соответственно.
- Разработана модель процесса ускоренного окисления меди в контакте с легкоплавкими оксидами. Рассчитанные в рамках этой модели и экспериментально полученные константы параболической скорости

окисления меди совпадают по порядку величины, что свидетельствует об удовлетворительном согласии теории с экспериментом.

Практическая значимость работы

- Разработанная модель ускоренного окисления меди может использоваться для оценки рабочего ресурса камер сгорания жидкостных ракетных двигателей, охлаждаемых жидким кислородом.
- Предложенная модель может служить основой при создании эффективной защиты от «горячей коррозии» и «катастрофического окисления» металлов и сплавов.
- 3. Обнаруженная высокая селективная проницаемость по кислороду (~1.7·10⁻⁴ моль·м⁻²c⁻¹) композитов MoO₃ –11 вес. % CuMoO₄ (при 720 °C) и V₂O₅ –18 вес. % CuV₂O₆ (при 640 °C) указывает на возможность их использования в качестве ионно-транспортных мембран в таких электрохимических устройствах, как топливные элементы (энергетика), мембранные реакторы конверсии метана в синтез-газ (химическая промышленность), сепараторы особо чистого кислорода (микро- и наноэлеткроника, фармацевтическая промышленность) и др.

На защиту выносятся

- 1. Модель ускоренного окисления меди в контакте с легкоплавкими оксидами.
- Экспериментальные результаты исследований кинетики высокотемпературного окисления меди в контакте с легкоплавкими оксидами, транспортных свойств и микроструктуры оксидных слоев.
- Результаты измерений проницаемости по кислороду композитов MoO₃ 8-11 вес.% CuMoO₄ и V₂O₅ – 12-18 вес.% CuV₂O₆.

Публикации и апробация работы. Основные результаты диссертации опубликованы в 4 статьях, и доложены на следующих научных конференциях: VII Российская ежегодная конференция молодых научных сотрудников и

аспирантов «Физико-химия и технология неорганических материалов» (Москва, 2010), Gordon Research Conference on High Temperature Materials, Processes and Diagnostics (Вотервиль, США, 2010), The European Corrosion Congress "EUROCORR 2011" (Стокгольм, Швеция, 2011), секция №7 НТС РКК «Энергия» им. С. П. Королева (Королев, 2011) и VIII Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов» (Москва, 2011).

Работа выполнена при финансовой поддержке ОХНМ РАН Программа №8 «Новые подходы к повышению коррозионной и радиационной стойкости материалов и радиоэкологической безопасности» и РФФИ (грант 11-08-00732а).

Структура и объем работы. Диссертационная работа изложена на 99 страницах машинописного текста, иллюстрирована 60 рисунками и 20 таблицами. Список цитируемой литературы содержит 126 наименований. Работа состоит из введения, трех глав (обзор литературы, методы исследования, результаты и их обсуждение), выводов и списка цитируемой литературы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во **введении** обоснована актуальность темы диссертации. Сформулированы цель работы и конкретные задачи исследования. Отмечены научная новизна и практическая значимость диссертационной работы.

В <u>первой главе</u> представлен обзор литературы, который состоит из 3-х основных разделов. В первом рассмотрена теория высокотемпературного окисления металлов. Во втором разделе обсуждены особенности высокотемпературного окисления меди. В третьем дан аналитический обзор работ по ускоренному окислению меди в контакте с легкоплавкими оксидами.

Во **второй главе** описаны методы исследования: термогравиметрия, дифференциальная сканирующая калориметрия, рентгенофазовый анализ, материалография, растровая электронная микроскопия и газовая хроматография.

Термогравиметрия. Кинетику окисления меди (марка М00к ГОСТ 546-2001 99,98%) изучали методом термогравиметрии (ТГ) на приборе синхронного термического анализа STA 449 F3 Jupiter® (NETZSCH, Германия). Медный образец (10 мм ×10 мм × 1 мм) с нанесенным на его верхнюю поверхность порошком MoO_3 (осч) или V_2O_5 (осч) помещали в кварцевый тигель, закрепленный на ТГ-держателе прибора, и нагревали на воздухе (расход 250 мл/мин) со скоростью 20 °С/мин до заданной температуры в интервале 400-800 °С. Затем в изотермических условиях регистрировали изменение массы образца.

Дифференциальная сканирующая калориметрия. Для определения температуры плавления эвтектики в продуктах окисления использовали метод дифференциальной сканирующей калориметрии (ДСК). Для этого были приготовлены модельные порошковые смеси. Полученную смесь помещали в корундовый тигель, закрепленный на ДСК-держателе прибора STA 449 F3 Jupiter® (NETZSCH, Германия). Образец нагревали со скоростью 20 °С/мин до заданной температуры в интервале 600-700°С и регистрировали разницу температур между тиглем с образцом и тиглем сравнения.

Рентгенофазовый анализ. Рентгенофазовый анализ (РФА) образцов проводили на дифрактометре Дрон-3М (Россия) Си K_{α} – излучение. Рентгенограммы снимали в интервале 2 Θ от 10° до 100° с шагом 0,1° (время экспозиции на каждом шаге – 5 секунд). Для идентификации фаз использовали базу данных Powder Diffraction Files (PDF).

Материалография. Пробоподготовку осуществляли на материалографическом оборудовании STRUERS (Дания), включающем отрезной станок, автоматический пресс ProntoPress-20 и шлифовальнополировальную систему TegraSystem. Для приготовления шлифов образцы помещались в автоматический пресс для горячей запрессовки на дно цилиндрической формы (диаметр 30 мм, глубина 10 мм) и засыпались токопроводящей смолой. После термообработки смола застывала. Поверхность полученной "шайбы" обрабатывали с помощью модульной шлифовальнополировальной системы TegraSystem по следующей методике: шлифовка

набором абразивных бумаг с уменьшающейся зернистостью (от 500 до 2400) до устранения канавок; полировка образцов на сукне с использованием набора алмазных паст с уменьшающейся зернистостью до 1 мкм. Качество полировки шлифа контролировали с помощью оптического микроскопа GX-51 (Olympus, Япония).

Растровая электронная микроскопия. Микроструктуру образцов изучали методом растровой электронной микроскопии (РЭМ) на электронном микроскопе с полевой эмиссией JSM-7401F (Jeol, Япония), используя детектор упругих электронов. Напряжение на ускоряющем электроде составляло 5-10 кВ, увеличение – 1000-15000. Исследовали поверхности шлифов. Определение химического состава образцов проводили методом энергодисперсионного рентгеноспектрального микроанализа (ЭРМА). Для анализа были выбраны линии спектра соответствующие Сu, Mo, V и O. Концентрация различных элементов для наглядности была отображена в виде картины с градиентами цветов (мэппинг).

Газохроматографический метод. Измерение проницаемости образцов по кислороду осуществляли газохроматографическим методом с помощью хроматографа Кристаллюкс-4000 (Россия). Для этого ячейку с образцом помещали в печь и нагревали до заданной температуры в интервале 600-720 °С. С одной стороны образец контактировал с воздухом ($P_{O_2}^{\prime\prime}=0,21$ атм), а с другой – с газом-носителем Не ($P'_{O_2} = 10^{-2}$ атм). После достижения стационарного состояния определяли концентрацию кислорода и азота в газе-носителе и фиксировали расход газовой смеси. С целью выявления натекания воздуха через уплотнения магистраль предварительно аттестовали. При расчете удельного потока кислорода *J* [моль·м⁻²·с⁻¹] через образец эти натекания учитывались: $J = \frac{Y - Y^f}{S} \cdot K_{O_2} \cdot \frac{\beta}{V_M}$, где Y [мВ·мин] – площадь пика на хроматограмме, соответствующая концентрации кислорода в газе-носителе, проникшего через образец; Y^f [мВ·мин] – площадь пика на хроматограмме, соответствующая концентрации кислорода в газе-носителе, проникшего через магистрали; $K_{O_2} = 6,36 \cdot 10^{-4}$ [мВ⁻¹·мин⁻¹] – калибровочный неплотности

коэффициент; *S* $[M^2]$ – площадь рабочей поверхности мембраны; $\beta [M^3 \cdot c^{-1}]$ – расход газовой смеси, $V_M [M^3 \cdot MOJS^{-1}]$ – мольный объем газа при комнатной температуре и атмосферном давлении *P*. Парциальное давление кислорода внутри ячейки рассчитывали по формуле: $P'_{O_2} = Y \cdot K_{O_2} \cdot P$.

В <u>третьей главе</u> представлены экспериментальные результаты исследования кинетики окисления, фазового состава, транспортных свойств и микроструктуры оксидных слоев. Рассмотрена модель ускоренного окисления меди в контакте с легкоплавкими оксидами.

Кинетика окисления. На рис. 1 а-в приведены кинетические кривые окисления меди, предварительно покрытой MoO₃ и окисленной на воздухе при 500, 600 и 700°C, соответственно, в зависимости от удельной массы покрытия (для сравнения приведена кривая 1 окисления меди без покрытия), где по оси абсцисс отложено время окисления, а по оси ординат – привес на единицу площади меди. Медь с покрытием MoO₃ окисляется ускоренно при 480 °C. Кинетические кривые окисления меди, покрытой V₂O₅, на воздухе при 600, 700 и 800°C приведены также в зависимости от удельной массы V₂O₅ на рис. 1 г-е, соответственно. Ускоренное окисление меди в данной системе происходит при 560 °C. Установлено, что медь с покрытием MoO₃ или V₂O₅ окисляется ускоренно на воздухе при 480 и 560 °C, соответственно. Скорость окисления меди возрастает с увеличением удельной массы покрытия.

Фазовый состав и микроструктура продуктов окисления. В соответствии с данными РФА продукты окисления в системе Cu-MoO₃ состоят из Cu₂O, CuO, Cu₃Mo₂O₉ и незначительного количества исходного MoO₃; в системе Cu-V₂O₅ из Cu₂O, CuO, Cu₃VO₄, Cu₅V₂O₁₀ и незначительного количества исходного V₂O₅.

Типичная микроструктура продуктов окисления меди в контакте с MoO₃ приведена на рис. 2 а. На микрофотографии видны две структурные составляющие – темная (основа) и светлая в виде поперечных сквозных каналов. В соответствии с данными ЭРМА, темная структурная составляющая содержит элементы медь и кислород; светлая – медь, молибден и кислород.

Рис. 1. Кинетика окисления меди в контакте с MoO₃ на воздухе при (a) 500°C, (б) 600 °C и (в) 700 °C (удельная масса MoO₃ [кг·м⁻²]: 1 – 0; 2 – 0,3; 3 – 0,6; 4 – 0,9) и V₂O₅ при (г) 600°C, (д) 700 °C и (е) 800 °C (удельная масса V₂O₅ [кг·м⁻²]: 1 – 0; 2 – 0,075; 3 – 0,15; 4 – 0,225).

Типичная микроструктура продуктов окисления меди в контакте с V₂O₅ приведена на рис. 2 б. На микрофотографии наблюдаются две структурные составляющие – светлая (основа) и темная в виде поперечных сквозных каналов. Светлая структурная составляющая, в соответствии с данными ЭРМА, содержит элементы медь и кислород; темная – медь, ванадий и кислород.

На рис. 2 в-г представлено распределение элементов (мэппинг) Сu, Мо и V в продуктах окисления меди в контакте с MoO₃ или V₂O₅, соответственно. Мэппинг, как и ЭРМА, показал, что молибден и ванадий присутствуют только в поперечных каналах.

Рис. 2. Микроструктура продуктов окисления меди в контакте с (а) MoO_3 (удельная масса $MoO_3 0,9 \text{ кг}\cdot\text{m}^{-2}$) и (б) V_2O_5 (удельная масса $V_2O_5 0,225 \text{ кг}\cdot\text{m}^{-2}$) при 600 и 700 °C, соответственно, и (в, г) распределение элементов (Cu – (\blacksquare), $Mo - (\blacksquare), V - (\blacksquare)$).

Рис. 3. Микроструктура каналов (a) Cu-MoO₃ (соответствует рис. 2 a) и (б) Cu- V_2O_5 (соответствует рис. 2 б).

Микроструктура «каналов» (более высокое разрешение) показана на рис. 3. На микрофотографиях наблюдается типичная микроструктура эвтектики. Следовательно, при температуре окисления эти поперечные каналы жидкие и служат транспортными путями для ускоренного массопереноса, так как коэффициенты диффузии ионов в жидких оксидах значительно выше, чем в Существование жидкой фазы в твердых. продуктах окисления также подтверждено данными термических исследований модельных порошковых смесей Cu₂O – 50 вес.% MoO₃ и Cu₂O – 50 вес.% V₂O₅ при P_{O_2} = 2·10⁻⁶ атм. ДСКкривые нагревания этих смесей приведены на рис. 4. На кривых присутствуют пики эндоэффектов при 480 °С (для системы Cu₂O-MoO₃) и 560 °С (для Cu₂O-V₂O₅), которые, по-видимому, соответствуют плавлению системы эвтектики в этих системах. Визуальный осмотр охлажденных образцов также подтвердил существование застывшего расплава. Температура плавления эвтектики совпадает с пороговой температурой ускоренного окисления меди в контакте с MoO_3 или V_2O_5 (рис. 1). Ускоренное окисление меди в системах Си-MoO₃ и Cu-V₂O₅ связано с образованием жидкой фазы в оксидном слое.

Рис. 4. Синхронный термический анализ порошковой смеси (a) Cu₂O – 50 вес.% MoO₃ и (б) Cu₂O – 50 вес.% V₂O₅ при P_{O_2} = 2·10⁻⁶ атм: 1 – ДСК, 2 – ТГ, 3 – Т.

Взаимодействие в системах Си-МоО₃ и Си-V₂O₅. Изучение взаимодействия в системах Си-МоО₃ и Си-V₂O₅ при 800 °C и 680 °C, соответственно, ($P_{O_2} = 2 \cdot 10^{-6}$ атм) показало, что на границе раздела «медь оксидный слой» возможны следующие окислительно-восстановительные реакции:

$$2Cu + MoO_3 \rightarrow Cu_2O + MoO_2 \tag{1}$$

$$2Cu + V_2O_5 \rightarrow Cu_2O + 2VO_2 \tag{2}$$

Транспортные свойства модельных композитов MoO_3 — $CuMoO_4$ и V_2O_5 – CuV_2O_6 . Для установления роли жидкой фазы в процессе ускоренного окисления меди в контакте с легкоплавкими оксидами изучались транспортные свойства модельных композитов $MoO_3 - 8$ -11 вес. % $CuMoO_4$ и $V_2O_5 - 12$ - 18 вес. % CuV_2O_6 как ниже эвтектической температуры (твердые фазы), так и выше - в двухфазной области диаграммы состояния, где твердая фаза существует в равновесии с жидкой. Выбор именно этих фаз для создания модельных композитов обусловлен наличием для них фазовых диаграмм состояния, что позволяет целенаправленно варьировать объемную долю жидкой фазы в этих композитах при температуре выше эвтектической: 710°C в системе MoO_3 – $CuMoO_4$ и 630°C в системе V_2O_5 – CuV_2O_6 .

Результаты измерений потока кислорода (J) в зависимости от объемной доли жидкой фазы (η) в композитах приведены на рис. 5. Установлено, что

композиты обладают высокой селективной проницаемостью по кислороду только при температурах выше эвтектической. Ниже этой температуры проницаемость по кислороду не обнаружена. Этот результат свидетельствует о том, что ускоренное окисление меди связано с интенсивным переносом кислорода в жидкой фазе. Поток кислорода возрастает с увеличением объемной доли жидкой фазы и достигает значений $1,7\cdot10^{-4}$ моль·м⁻²с⁻¹ через композит MoO₃ –11 вес. % CuMoO₄ ($\eta \approx 25$ об. %) при 720°C и $1,6\cdot10^{-4}$ моль·м⁻²с⁻¹ через композит V₂O₅–18 вес. % CuV₂O₆ ($\eta \approx 30$ об. %) при 640°C.

Образование жидкой фазы в оксидном слое приводит к существенному повышению его диффузионной проницаемости по кислороду и резкому возрастанию скорости окисления меди. Чем выше объемная доля жидкой фазы в оксидном слое, тем выше скорость окисления меди.

Рис. 5. Зависимость удельного потока кислорода (*J*) через композиты (a) MoO₃ – 8, 9, 10, 11 вес. % CuMoO₄ при 720°C и (б) V₂O₅ – 12, 14, 16, 18 вес. % CuV₂O₆ при 640°C от объёмной доли жидкой фазы (*η*).

Константы параболической скорости окисления меди. На рис. 6 представлена кинетика окисления меди в контакте с MoO_3 и V_2O_5 в параболических координатах. Все изотермические участки кривых, представленных на рис. 1, спрямляются в параболических координатах. Это

Рис. 6. Кинетика окисления меди в контакте с MoO_3 на воздухе при (a) 500°С, (б) 600°С и (в) 700°С (удельная масса MoO_3 [кг·м⁻²]: 1 – 0; 2 – 0,3; 3 – 0,6; 4 – 0,9) и V_2O_5 при (г) 600°С, (д) 700°С и (е) 800°С (удельная масса V_2O_5 [кг·м⁻²]: 1 – 0; 2 – 0,075; 3 – 0,15; 4 – 0,225) в параболических координатах.

означает, что окисление происходит по параболическому временному закону (3)

$$\left(\frac{m}{s}\right)^2 = k''t,\tag{3}$$

где m – изменение массы образца [кг], S – площадь окисляемой поверхности [m^2], k'' – константа параболической скорости окисления [$\kappa r^2 m^{-4} c^{-1}$] и t – время [c]. Диффузия ионов кислорода в оксидном слое контролирует скорость процесса. Константы параболической скорости окисления меди, рассчитанные по формуле (3) из графиков, представленных на рис. 6 приведены в таблицах 1 и 2. Константа параболической скорости окисления меди, покрытой MoO₃ или V₂O₅, возрастает с увеличением удельной массы покрытия и может превышать собственную константу параболической скорости окисления меди (без покрытия) на два порядка величины.

Таблица 1. Константа параболической скорости окисления меди в контакте с MoO₃.

$\frac{m(MoO_3)}{S}, \text{ K}\Gamma \cdot \text{M}^{-2}$	T, °C	k'', кг ² м ⁻⁴ с ⁻¹
0	500	2,5×10 ⁻⁸
0,3	500	9,3×10 ⁻⁷
0,6	500	1,9×10 ⁻⁶
0,9	500	2,3×10 ⁻⁶
0	600	1,0×10 ⁻⁷
0,3	600	3,1×10 ⁻⁶
0,6	600	6,5×10 ⁻⁶
0,9	600	1,0×10 ⁻⁵
0	700	2,9×10 ⁻⁷
0,3	700	9,2×10 ⁻⁶
0,6	700	2,1×10 ⁻⁵
0,9	700	3,8×10 ⁻⁵

Таблица 2. Константа параболической скорости окисления меди в контакте с V_2O_5 .

$\frac{m(V_2O_5)}{S}, \text{ K}\Gamma^{\cdot}\text{M}^{-2}$	T, °C	k'', кг ² м ⁻⁴ с ⁻¹
0	600	1,0×10 ⁻⁷
0,075	600	9,8×10 ⁻⁷
0,150	600	2,7×10 ⁻⁶
0,225	600	4,5×10 ⁻⁶
0	700	2,9×10 ⁻⁷
0,075	700	3,4×10 ⁻⁶
0,150	700	8,6×10 ⁻⁶
0,225	700	1,6×10 ⁻⁵
0	800	1,0×10 ⁻⁶
0,075	800	9,7×10 ⁻⁶
0,150	800	2,2×10 ⁻⁵
0,225	800	4,1×10 ⁻⁵

Температурные зависимости константы параболической скорости окисления меди и энергии активации процесса представлены на рис. 7 а, б и в таблицах 3 и 4, соответственно.

Рис. 7. Температурные зависимости константы параболической скорости окисления меди в контакте с (а) MoO₃ (удельная масса MoO₃ [кг·м⁻²]: 1 - 0,3; 2 - 0,6; 3 - 0,9) и (б) V₂O₅ (удельная массы V₂O₅ [кг·м⁻²]: 1 - 0,075; 2 - 0,15; 3 - 0,225).

Таблица 3. Энергия активации процесса ускоренного окисления меди в контакте с MoO₃.

$\frac{m(MoO_3)}{S}, \text{ K}\Gamma \cdot \text{M}^{-2}$	Е _а , кДж∙моль ⁻¹
0,3	71,5
0,6	74,9
0,9	87,5

Таблица 4. Энергия активации процесса ускоренного окисления меди в контакте с V₂O₅.

$\frac{m(V_2O_5)}{S}, \text{ K}\Gamma \cdot \text{M}^{-2}$	Е _а , кДж∙моль ⁻¹
0,075	89,3
0,150	80,0
0,225	86,2

Модель ускоренного окисления меди. Разработана модель процесса ускоренного окисления меди в контакте с легкоплавкими оксидами, ключевыми положениями которой являются:

- 1. При ускоренном окислении меди в контакте с легкоплавкими оксидами имеет место образование жидкой фазы в оксидном слое.
- 2. В процессе ускоренного окисления меди формируются непрерывные поперечные жидкие каналы в оксидном слое.
- 3. Жидкие каналы служат диффузионными путями для ионов кислорода.
- На внутренней границе раздела «металл оксидный слой» медь взаимодействует с легкоплавким оксидом, образуя при этом Cu₂O. Продукты взаимодействия окисляются кислородом воздуха.
- 5. Диффузия ионов кислорода по жидким каналам является лимитирующей стадией процесса.
- 6. Ионы кислорода и электроны являются основными носителями заряда.
- 7. Толщина оксидного слоя значительно больше расстояния, на котором сказывается воздействие объемного заряда (двойной электрический слой).

Рис. 8. Схематическое изображение оксидного слоя.

Если в момент времени *t* толщина оксидного слоя на меди равна *h* (рис. 8), уравнение баланса массы запишется в виде:

$$c^* \frac{dh}{dt} = D_i \eta \frac{dc}{dx} \tag{4}$$

где c^* – концентрация кислорода в оксидном слое [моль·м⁻³], D_i – коэффициент диффузии ионов кислорода в жидкой фазе [м²c⁻¹], η – объемная доля жидкой фазы в оксидном слое.

В работе приведено решение уравнения (4) для граничных условий $c (x = 0, t) = c_0$ и $c (x = h, t) = c_1$. Получено выражение (5) для константы параболической скорости окисления меди

$$k'' = \frac{2D_i \rho^2 \eta c_0}{c^*} \tag{5}$$

где ρ – плотность оксидного слоя [кг·м⁻³]. Рассчитанные по формуле (5) и экспериментально полученные значения константы параболической скорости окисления меди одного порядка величины (табл. 5 и 6), что свидетельствует об удовлетворительном согласии теории с экспериментом.

Таблица 5. Теоретически рассчитанные $(k_{\rm T}'')$ и экспериментально полученные $(k_{\rm 9}'')$ значения константы параболической скорости окисления меди в контакте с МоО₃.

$\frac{m(MoO_3)}{S}, \text{ K}\Gamma^{\bullet}\text{M}^{-2}$	Т, °С	η	$k_{9}^{''}$, кг ² м ⁻⁴ с ⁻¹	$k_{\rm T}^{''}$, $\kappa \Gamma^2 {\rm m}^{-4} {\rm c}^{-1}$
0,9	600	0,16	1,0×10 ⁻⁵	1,4×10 ⁻⁵
0,9	700	0,25	3,8×10 ⁻⁵	2,2×10 ⁻⁵

Таблица 6. Теоретически рассчитанные $(k_{\rm T}'')$ и экспериментально полученные $(k_{\rm 9}'')$ значения константы параболической скорости окисления меди в контакте с V₂O₅.

$\frac{m(V_2O_5)}{S}, \text{ K}\Gamma^{\text{-}}\text{M}^{-2}$	T, ℃	η	$k_{\mathfrak{I}}^{''}$, кг ² м ⁻⁴ с ⁻¹	$k_{\rm T}^{''}$, к Γ^2 м ⁻⁴ с ⁻¹
0,225	700	0,14	1,6×10 ⁻⁵	1,2×10 ⁻⁵
0,225	800	0,27	4,1×10 ⁻⁵	2,3×10 ⁻⁵

выводы

- Установлено, что процесс ускоренного окисления меди в контакте с MoO₃ и V₂O₅ подчиняется параболическому временному закону. Показано, что константа параболической скорости окисления меди в контакте с MoO₃ и V₂O₅ возрастает на два порядка величины и составляет 3,8·10⁻⁵ кг²·м⁻⁴·c⁻¹ (удельная масса MoO₃ 0,9 кг·м⁻²) и 1,6·10⁻⁵ кг²·м⁻⁴·c⁻¹ (удельная масса V₂O₅ 0,225 кг·м⁻²) при 700 °C.
- Установлено, что ускоренное окисление меди обусловлено образованием поперечных жидких каналов в оксидном слое. Показано, что диффузия ионов кислорода по жидким каналам является лимитирующей стадией процесса.
- Разработана модель процесса ускоренного окисления меди в контакте с легкоплавкими оксидами. Рассчитанные в рамках этой модели константы параболической скорости окисления меди совпадают по порядку величины с экспериментально полученными, что свидетельствует об удовлетворительном согласии теории с экспериментом.
- 4. Обнаружена высокая селективная проницаемость по кислороду модельных композитов $MoO_3 8-11$ вес.% CuMoO₄ и $V_2O_5 12-18$ вес.% CuV₂O₆. Удельный поток кислорода через композиты $MoO_3 11$ вес. % CuMoO₄ и $V_2O_5 18$ вес. % CuV₂O₆ составляет ~1,7·10⁻⁴ моль·м⁻²с⁻¹ при 720 °C и 640 °C, соответственно.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

- A. A. Klimashin, V. V. Belousov. Accelerated corrosion of MoO₃-deposited copper // *Corros. Sci.* 2011. Vol. 53, No. 10, P. 3150-3155.
- A. A. Klimashin, V. V. Belousov. Accelerated oxidation of V₂O₅-deposited copper // Oxid. Met. 2011. Vol. 76, No. 5-6, P. 359-366.
- 3. А. А. Климашин, В. В. Белоусов. Кинетика и механизм ускоренного окисления меди в контакте с V₂O₅ // *Материаловедение*. 2011. № 4, С. 53-55.
- А. А. Климашин, В. В. Белоусов. Ускоренная высокотемпературная коррозия меди в контакте с MoO₃ // Коррозия: материалы, защита. 2011. № 9, С. 1-4.
- 5. А. А. Климашин. Кинетика и механизм ускоренного окисления меди в присутствии MoO₃ и V₂O₅. Сборник материалов VII Российской ежегодной конференции молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов», Москва, 8-11 ноября 2010, С. 352-353.